想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

2019-09-26 20:33:06 21点赞 151收藏 8评论

本文转载自CSDN,原标题《EQ均衡器原理》,作者:林学森,未经允许请勿转载。

做音乐最离不开的效果器是什么?相信大多数朋友都会回答:是EQ!不错,正是有了这个所谓“均衡”的效果器,我们的音乐才不会过载,乐器音色才会如此丰富。然而知道1加1等于2更要知道1加1为什么等于2。今天我把这个效果器扒光,从根本上来分析它的工作原理。

“EQ的原理??我知道我知道!!声波是由不同谐波组成的!所谓均衡处理就是改变这些谐波的振幅。”这个说法也对也不对。说它对是因为均衡效果器的初衷是这样的。说它不对,是因为以当今的数学算法,还不能做到由答案推出确定的问题。比如一道题的答案是10,我的问题可以是2+8,也可以是1+3+6,甚至可以是5.5+4.4+0.1等等等等……波形也是一样,同样的合成波形,可以有无数谐波组合。所以说,效果器根本不能分清楚这些谐波的个数与振幅类型。不过均衡的发明者很聪明,他并不让EQ处理不可琢磨的谐波去改变音色,而是通过一种巧妙的方法,间接的改变了音色:

从高中物理书上的“振动与波”一章可知频率等于周期的倒数。而所谓周期,就是指物体完成某种运动,回到初始状态所经历的时间。大家请看这张图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围


由图中的纵轴的零点来看,这个波形的从0时刻从0振幅开始跨越1/440秒后回到了初始状态(第1/880点纵轴位置也是0点,但是运动方向与初始位置相反。所以不能当作返回)。现在我们知道这个波形的频率是440Hz(1/440的倒数),可是这个波形就只有440Hz的声音么?不是的。如果我们从图中纵轴的某个非零位置看上去,如图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

正如大家看到的,这一段里,振动回到平衡位置经历的时间是1/1000秒,也就是说,图中绿色部分是频率为1000Hz的波形。同样的,从纵轴不同的非零位置看,可以得到各种频率的波形,如图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围


这样,我们就近似得到了波形的各个分波。下面EQ所要做的,就是调整各个近似分波的振幅(音量)大小。但在这之前,我们先要下一个定义:同样的波形,在纵轴的不同位置看上去有不同的频率,我们把从平衡位置(纵轴零点)看上去呈现的频率称为“乐音频率”,把从纵轴不同位置看上去的分波统称“声音频率”。人耳在接收声音的时候,会自动把耳膜在平衡位置的振动频率(也就是“乐音频率”)当作音高,把其他频率转化为音色。

2.模拟EQ,数字EQ横纵比:

最原始的EQ,是利用电容器的所谓“容抗”现象来调整声音的音色,所谓“容抗”,既是说电容器有这样一种物理现象。对于不同规格的电容,其对不同频率交流电信号有减弱或提升的现象。声音从mic转化后会变成交流电信号,电流I会正比于声音振幅(其实只能近似正比)。I通过导线进入EQ,我们用一个3段EQ的理论电路来举例如图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

图中3个不同规格的电容器分别负责调整高频,中频和低频。由于三个电容分别对高,中,低频率的敏感程度不一样,人们便可以通过调整各个电容的电流传输效率来产生EQ效果。这种利用物理现象的方法是明智又省力的,而且相当精确!但是随着数码录音技术的发展,录音师们开始喜欢在后期加入EQ,传统EQ便不能满足需要了。于是越来越多的数字EQ出现在了人们眼前。在声音信号已经量化的数字信号中调整EQ,就必须利用数学算法来解决。大家一定都听说过“采样率”这个概念。在数字音频信号中,波形的变化不能是连续的,而是由一个一个采样点串起来的。如图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

这种设计产生了一个麻烦??我们在分析采样点频率时很难找到另一个采样点刚好与这个点振幅状态一致,如图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

所以,数码EQ必须像穿线一样将各个采样点连起来,才能近似找到两个状态一致的点。说起来容易作起来难,电脑不是人脑,只能以数学方法来“穿线”。最古老的方法,我称作“直线路径”即用直线连接各个采样点。这种做法很简单,但是谁都知道采样点与采样点之间不可能是直线连接,这样会产生很大误差!后来人们根据高数中的某个算式(名字忘了),用最接近原始波形的曲线连接了采样点,我称作“模拟路径”。如图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

这种方法误差依然存在,毕竟那是理论算出来的不是真正的波形。但是已经与原始波形相差很少很少了。现今流行的数字EQ,大都采用这种设计。

3.数字EQ的原理:

数字EQ虽然种类繁多,其实原理都是一样的,即:将输入信号“x”建立对应输出信号“Y”,Y=f(X),其中f()这个作用式中又包括了一个与“x”对应频率“k”的函数。将对应“X”的函数表达式展开也就是: Y=g(k)*X。其中g()随EQ参数调节而变化。

举例:古老数字EQ的原理。

这是一个古老的3段EQ,使用“直线路径”。我们把中频提升到2倍,高频提升3倍。这时,函数的作用式就变成了:

Y=1*X (k属于0hz到400hz)
Y=2*X (k属于400hz到2500hz)
Y=3*X (k属于2500hz到无穷)

图像:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

从图上可以看出(希望大家看的懂啊呵呵),这种EQ调节“有塄有角”,399.9hz振幅还一点不变,到401hz就突然增加2倍。我和朋友写过一个小播放器,就加入了这EQ,产生了魔鬼的声音…………现今的EQ不但拥有“模拟路径”,还拥有渐变的函数作用式。同样的3段EQ,把中频提升到2倍,高频提升3倍,函数图像会变的很圆滑(函数式展开很恐怖,就不细说了):

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

如图所示,这个“楼梯”很圆滑,在虽然中频从400hz开始算起,但是从350hz左右就已经开始增加振幅产生渐变的效果。大家可以试试,即便把EQ的高频降低到0,我们依然可以听到一点高频。而且由于采用了“模拟路径”,使频率的分析更准确!更加容易调节。但这两种优化算法比古老EQ更费系统资源。

我们之所以要讲到已经没有用的古老EQ,是因为它更方便人们理解EQ。有些朋友总是问:EQ效果器既然能改变声音的频率,C调的歌调完EQ会不会变成降B??降低bass的低频,bass听起来会不会好像升了一个8度??大家还记得前文提到的“乐音频率”和“声音频率”概念么?我们带着这个概念从古老EQ入手来解释这两个问题。

我们来看古老EQ的公式:Y=r*X (k属于ahz到bhz)。前面已经说过,声音的音高只与“乐音频率”有关。也就是说,想证明EQ效果器能改变声音的频率而不改变音高,只需证明EQ效果器能改变声音频率而不改变乐音频率。请看下图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

根据乐音频率的定义,它必然是两个同样状态的0点之间时间长度的倒数(第1零点,第3零点)。我们设1点的时刻为t1,3点的时刻为t2。乐音频率f=1/(t2-t1)。我们来证明t1时刻或者t2时刻不发生变化:对于任意一个输入信号“x”有输出信号Y=r*X (k属于ahz到bhz)。在任意t时刻,经过EQ处理的信号可以改变为任意值。但是由于1,3点的X值为0,所以无论我们如何调整EQ参数,Y=r*0=0,所以在1,3点,X值永远等于Y值为0。即所有振幅为0的时刻点经过EQ处理,振幅依然为0,所以第1零点,第3零点之间的时间间隔不随参数变化而变化。如图:

想要调出自己喜欢的声音?你应该先了解EQ(均衡器)的基本原理与常用乐器的频响范围

这就是EQ效果器能改变声音频率而不改变音高的原因,所以大家(尤其是初学者)大可放心地使用EQ。其实随着技术的进步,数字EQ的算法也开始变得多种多样。就在这篇稿子即将完成时,又听说有通过任意频点的前后两点前后两点计算斜率(就是该点的速度)来确定频率的新奇高招,但EQ的宗旨不变??只改变千篇一律的音色。声音频率和音乐中440hz等等乐音频率不是一个概念,调低高频音乐不可能没了高声部,bass也不会因为降低低频而消失。

知道了 EQ 的原理,我们就可以自己动手,来对器材进行微调了。那么,各个不同的频段到底对声音有怎样的影响呢?小小值在这里整理了一份详细的列表,大家可以针对自己的器材使用。

  • 30~80Hz:这一频段正是我们在的吧外所听到的底鼓的强劲有力的频段,略提升可增加震撼力,但不要过多,过多会混沌。同时注意对人声的处理这一频段应在低切的范围内。(注意:这里做的工作是否能得到好的结果和你的监听音箱也有很大的关系,一对频率响应曲线平滑的专业监听音箱,对录音和混音工作来说决对是必须的!为了得到更好的结果,你可以把自己认为不错的唱片的WAVE放在电脑硬盘里,对之频率进行分析,并以此为标准。而把最终调整好的结果做成CD、磁带,在不同的CD机、磁带录音机中播放也是一种不错的检测手段。)

  • 100Hz:Bass的主要频点,在这里做提升,可增加丰满度和底鼓的击胸的感觉。我各人喜欢在350~700 Hz之间提升贝司,在100Hz和250Hz调整底鼓,这样两者才不会打架。这一频段的人声也应在低切的范围内。

  • 200~400hz:这个频段提升也增加军鼓的木质感,吉它的温暖感。衰减这个频段可使人声、镲等显得清晰。在400Hz提升3-5dB可增加人声的温暖感。

  • 500~800hz Hz:可作3~5dB左右的提升,可增加乐曲力度,可使贝司显示出来,通鼓更温暖,同时可调整吉它的厚薄程度。

  • 800~2KHz:可在6dB内提升,可突出某些乐器的声音,但在1KHz以上一点的频率不作过多提升,以免产生金属声。

  • 2~4KHz:可作3dB左右的提升,可增加亮度,过多会变尖锐。这一频段的提升可让人耳听到更为突出的声音,所以在这里做的工作应是各声源之间相互适应性调整,而不是一味地全面提升,这只会使你的音乐听起来没有层次而且尖锐难听。

  • 5~8KHz:适度提升可增加层次感,可使人声更清晰,吉它更动听。军鼓、镲、小提等都可在此得到声音的美化,但一定要适度。

  • 10KHz以上:提升要小心,多了会产生破音。以听上去舒服为度。如果所录声源在此频段没有信号,做提升的结果只能是增加了噪音。

  • 16K~20KHz频率:这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16~20KHz频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。这段频率影响音色的韵味、色彩、感情味。如果音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果这段频率过强,则给人一种宇宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生一种不安定的感受。这段频率在音色当中强度很小,但是很重要,是音色的表现力部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。

  • 12K~16KHz频率:这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种"金光四射"的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生"毛刺"般尖噪、刺耳的高频噪声,对此频段应给予一定的适当的衰减。

  • 10K~12KHz频率:这是高音木管乐器的高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。

  • 8K~10KHz频率:这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。

  • 6K~8KHz频率:这段频率影响音色的明亮度,这是人耳听觉敏感的频率,影响音色清晰度。如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿音严重。

  • 5K~6KHz频率:这段频率最影响语音的清晰度、可懂度。如果这段频率成分不足,则音色显得含糊不清;如果此段频率成分过强,则音色变得锋利,易使人产生听觉上的疲劳感。

  • 4K~5KHz频率:这段频率对乐器的表面响度有影响。如果这段频率成分幅度大了,乐器的响度就会提高;如果这段频率强度变小了,会使人听觉感到这种乐器与人耳的距离变远了;如果这段频率强度提高了,则会使人感觉乐器与人耳的距离变近了。

  • 4KHz频率:这个频率的穿透力很强。人耳耳腔的谐振频率是1K~4KHz所以人耳对这个频率也是非常敏感的。如果空虚频率成分过少,听觉能力会变差,语音显得模糊不清了。如果这个频率成分过强了,则会产生咳声的感觉,例如当收音机接收电台频率不正时,播音员常发出的咳音声。

  • 2K~3KHz频率:这段频率是影响声音明亮度最敏感的频段,如果这段频率成分丰富,则音色的明亮度会增强,如果这段频率幅度不足,则音色将会变得朦朦胧胧;而如果这段频率成分过强,音色就会显得呆板、发硬、不自然.

  • 1K~2KHz频率:这段频率范围通透感明显,顺畅感强。如果这段频率缺乏,音色则松散且音色脱节;如果这段频率过强,音色则有跳跃感。

  • 800Hz频率:这个频率幅度影响音色的力度。如果这个频率丰满,音色会显得强劲有力;如果这个频率不足,音色将会显得松弛,也就是800Hz以下的成分特性表现突出了,低频成分就明显;而如果这个频率过多了,则会产生喉音感。人人都有一个喉腔,人人都有一定的喉音,如果音色中的喉音成分过多了,则会失掉语音的个性、失掉音色美感。因此,音响师把这个频率称为"危险频率",要谨慎使用。

  • 500Hz~1KHz频率:这段频率是人声的基音频率区域,是一个重要的频率范围。如果这段频率丰满,人声的轮廓明朗,整体感好;如果这段频率幅度不足,语音会产生一种收缩感;如果这段频率过强,语音就会产生一种向前凸出的感觉,使语音产生一种提前进人人耳的听觉感受。

  • 300Hz~500Hz频率:这段频率是语音的主要音区频率。这段频率的幅度丰满,语音有力度。如果这段频率幅度不足,声音会显得空洞、不坚实;如果这段频率幅度过强,音色会变得单调,相对来说低频成分少了,高频成分也少了,语音会变成像电话中声音的音色一样,显得很单调。

  • 150Hz~300Hz频率:这段频率影响声音的力度,尤其是男声声音的力度。这段频率是男声声音的低频基音频率,同时也是乐音中和弦的根音频率。如果这段频率成分缺乏,音色会显得发软、发飘,语音则会变得软绵绵;如果这段频率成分过强,声音会变得生硬而不自然,且没有特色。

  • 100Hz~150Hz频率:这段频率影响音色的丰满度。如果这段频率成分增强,就会产生一种房间共鸣的空间感、混厚感;如果这段频率成分缺少,音色会变得单薄、苍白;如果这段频率成分过强,音色将会显得浑浊,语音的清晰度变差。

  • 60Hz~100Hz:这段频率影响声音的混厚感,是低音的基音区。如果这段频率很丰满,音色会显得厚实、混厚感强。如果这段频率不足,音色会变得无力;而如果这段频率过强,音色会出现低频共振声,有轰鸣声的感觉。

  • 20Hz~60Hz频率:这段频率影响音色的空间感,这是因为乐音的基音大多在这段频率以上。这段频率是房间或厅堂的谐振频率。如果这段频率表现的充分,会使人产生一种置身于大厅之中的感受;如果这段频率缺乏,音色会变得空虚;而如果这段频率过强,会产生一种嗡嗡的低频共振的声音,严重地影响了语音的清晰度和可懂度。

展开 收起
8评论

  • 精彩
  • 最新
提示信息

取消
确认
评论举报

相关好价推荐

相关文章推荐

更多精彩文章
更多精彩文章
最新文章 热门文章
151
扫一下,分享更方便,购买更轻松